Query

POST Generate AI Completion

Generate AI completions using relevant document context. The system will automatically retrieve relevant chunks from your documents based on semantic similarity to provide context for the AI model's response.

Parameters:

Field
Type
Required
Default
Description

query

string

Yes

-

The question or prompt

filters

object

No

null

Metadata filters to apply

k

integer

No

4

Number of context chunks to use

min_score

float

No

0.0

Minimum similarity score threshold

max_tokens

integer

No

null

Maximum tokens in completion

temperature

float

No

null

Sampling temperature for completion

Returns: CompletionResponse object with:

  • completion: Generated text response

  • usage: Token usage statistics (completion_tokens, prompt_tokens, total_tokens)

from databridge import DataBridge

db = DataBridge(uri="your-databridge-uri")

# Generate completion
response = db.query(
    query="What are the main applications of machine learning?",
    filters={"category": "tech"},
    k=3,
    max_tokens=150,
    temperature=0.7
)

print("Answer:", response.completion)
print(f"Total tokens used: {response.usage.total_tokens}")

Response:

{
    "completion": "Based on the retrieved context, machine learning has several key applications...",
    "usage": {
        "completion_tokens": 45,
        "prompt_tokens": 120,
        "total_tokens": 165
    }
}

Last updated